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Introduction

Wearable devices have shown great potential for obtaining measures of
real-world evidence in clinical trials, but standardization and variability
between different devices remains one of the barriers for systematic
deployment. In this investigation, we present a neural network algorithm
for sleep detection, Deep Learning Sleep (DLS), and compare its
reliability across different datasets and two widely used sleep
algorithms: Cole-Kripke (CK) [1] and the estimation of stationary
segments algorithm (ESS) [2]. Our results show that DLS algorithm
outperforms CK and ESS by delivering higher mean accuracy when
predicting sleep-wake segments in inter-device cross-validation
experiments.

Methodology
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A classification example from an RBD (REM behavioural disorder) patient
is shown in Fig. 3-right. RBD is a sleep disorder where an individual acts
out their dreams; patients may move their limbs, talk and even walk out
of the bed. This makes sleep estimation challenging, however, DLS and
CK showed a good agreement with PSG. ESS on the other hand
misclassified an important time segment as awake.

Results

Conclusions

To test the performance of the three sleep algorithms, we used three
accelerometry databases; one internal and two publicly available: The
CONTEXT study database (IXI, ixico.com), The Technische Universität
Darmstadt database (TUD) [2] and the Newcastle polysomnography
database (NCL) [3]. The IXI database comprises accelerometry data
acquired with AX3 devices (axivity.com) from 46 participants, ten of them
diagnosed with Parkinson’s disease (PD), who were recruited within a
community study at the Centre Hospitalier Universitaire in Montpellier
France, see Table I.

Our results showed that DLS outperformed two widely used algorithms
for sleep segment classification, ESS and CK. The DLS algorithm showed
higher mean accuracy in all experiments. Noticeable from our
experiments is that the mean values for sensitivity, specificity and
accuracy for the DLS did not significantly change across cross-validation
and independent evaluation experiments, i.e. DLS performance did not
change across wearable devices. Device agnosticism and robustness
across different patient populations is crucial when high confidence in
the deployed algorithms is necessary, as is the case in real-world
evidence assessment for clinical trials.

Cross-validation and independent evaluation results are shown in Fig. 2.
The mean accuracy of the DLS was higher than ESS and CK algorithms in
all cross-validation and independent evaluations. This difference was
higher when comparing the mean accuracy between the TUD-DLS-IXI
and TUD-ESS-IXI cases, with mean accuracies of 0.72 and 0.66
respectively. Additionally, DLS showed a more stable performance across
cross-validations and evaluations, with high sensitivity (>= 0.89) and
specificity (>= 0.42). On the contrary, ESS reached a specificity of 0.33 for
the IXI-ESS-TUD case and the CK algorithm reached a mean specificity of
0.27 for the equivalent case [4].

Reliability of wrist-worn accelerometry devices and algorithms for sleep detection 

ix ico.com   |   IXICO  | @IXICOnews | info@ixico.com

1
0
0
1
1
0
1

DLS: 1D Convolutional Neural Network

Axivity AX3 GENEActivAxivity AX3 GENEActiv

For the DLS training, the training database was divided in train (99%)
and test (1%) sets across all accelerometry segments; batch size was 50,
and earlystopping was used to define convergence. The CK and ESS
algorithms were tuned using a grid search for the ideal
hyperparameters. After grid-searching, the hyperparameters that
resulted in the highest accuracy for the training database were stored
and used in the cross-validation and independent evaluation
experiments.

Fig. 3-left shows sleep-wake segment estimation results from a healthy
participant within the NCL database. Predictions were made using IXI-
trained models: IXI-DLS, IXI-CK and IXI-ESS. Overall the three models
estimated sleep and wake segments correctly, however the CK algorithm
failed in estimating a wake segment around 03:48 hours.
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Figure 1. Data analysis pipeline. Recorded datasets are pre-processed and fed to the DLS
algorithm for feature extraction and sleep-wake output predictions.

Figure 3. Sleep-wake segment estimation by the three algorithms for a healthy control and
RBD participants from the Newcastle (NCL) database. Ground-truth polysomnography (PSG)
is shown at the top of each panel.

Figure 2. Sleep-wake segment classification; cross-validations and independent evaluations. (a) Cross-
validation and evaluation results for the DLS algorithm, (b) and (c) same as (a) but for the ESS and CK
algorithms. Cross-validation resulted in two trained models per algorithm; for example, for the DLS
algorithm these trained models would be IXI-DLS and TUD-DLS, which were respectively cross-validated
and labelled as IXI-DLS-TUD and TUD-DLS-IXI. The independent evaluations with the NCL database were
labelled as IXI-DLS-NCL and TUD-DLS-NCL. This labelling scheme for cross-validation and independent
evaluation was followed for the other two algorithms, CK and ESS. Each box plot shows the performance
median value within the boxes and the mean at its bottom. Sensitivity (SENS), specificity (SPEC), and
accuracy (ACCU).


