A convolutional neural network-based framework for
imaging biomarkers in multiple sclerosis:

white matter hyperintensity and bra|n¢reg|on volumes;___'\

Introduction Objectives/Aims

 White matter (WM) lesions are a hallmark of multiple sclerosis (MS) and reflect the To validate convolutional neural
inflammatory activity. networks (CNNs) for:
 Automatic detection of WM hyperintensities (WMH) from magnetic resonance imaging
(MRI) T2-fluid attenuated inversion recovery (FLAIR) scans can support MS diagnosisand' 1. segmentation of WMH from

help to monitor treatment effectiveness in clinical trials. 3D FLAIR scans

* Brain volumetric measures can be used to study the neurodegenerative component of 2. segmentation of MS-relevant
MS, to predict disability progression, and to evaluate potential anti-inflammatory, brain regions from 3D T1-
remyelinating or neuroprotective therapies.3 weighted (T1W) scans

* [XICO’s IXIQ.Ai is a framework for MRI segmentation workflows.#® 3. volumetric analysis

Methods A) Pre-processing ot

Baseline cross sectional pre-processing pre-processing Baseline
* CNNs trained to segment WMH from 3D FLAIR scans and brain
regions, incl. whole-brain (WB) and thalamus, from 3D T1W scans %
* Jacobian integration used to estimate WB volume change Brin. Inomgenaity N oreniaton lltftytf;tltt
 Dataset for WMH workflow validation: a publicly available MS
dataset’ with 3D FLAIR scans, manual segmentations by seven expert %
raters, and a rater majority voting consensus
Follow-Up Follow-Up

e Datasets for brain region workflow validation: ADNI
(https://adni.loni.usc.edu/), OASIS (https://www.oasis-brains.org/),
Huntington’s disease (two, internal), multiple system atrophy Train 3D-

] . UNET by
(internal), healthy controls aged 75-86 and 19-25 (https://brain- gradien
development.org/ixi-dataset/)

e WNMH ground truth = majority voting consensus

* Brain region ground truth = semi-automated segmentations
(with manual edits) Nigidsafine registration of

* Accuracy/robustness from dice score coefficient (DSC), visual
assessment, volume correlation/volume error, group separation

° TeSt_reteSt performa nce (AD N I BTB dan d OASIS d atasets) Figure 1: IXIQ.Ai workflows for A) pre-processing for cross-sectional and longitudinal analyses, B) region

segmentation, and C) Jacobian Integration for volume change analysis

B) Deep Learning for Region Segmentation

Trained
model

Non-linear registration Calculation of Jacobian Jacobian Integration
longitudinal scans (Al) Determinant from warpfield within a region

Results

WMH: DSC wrt Ground Truth
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Figure 2: Boxplots showing the distribution of DSCs: IXIQ.Ai WMH workflow (prediction), each individual expert rater (raters 1-77) and other WMH segmentation methods compared to the WMH ground truth (consensus).
(antspy, https://github.com/ANTsX/ANTs/wiki; BIANCA, https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/BIANCA/Userguide - lesion probability maps thresholded at 0.8/0.9/0.95; nic_MSlesion, https://github.com/sergivalverde/nicMSlesions)

The WMH workflow’s ground-truth overlap (mean=SD DSC = 0.65%+0.17) was comparable to the individual raters’ and higher than for other automated methods (antspy 0.51+0.19; bianca_0.9
0.35%0.19; nic_MSlesion 0.52+0.23) (also see Figure 2). Its average volume correlation with the ground truth (r = 0.96) was higher than for the other methods (antspy r = 0.85; bianca_0.9 r = 0.69;
nic_MSlesion r = 0.87) and its average volume error (AVE) relative to the ground truth (mean=SD AVE, mL = 3.1%+3.3) was the lowest (antspy 6.5+9.1; bianca_0.9 8.3+11.0; nic_Mslesion 5.1 +6.9).

Region Segmentation: WB and Thalamus Volume Change: WB

CN vs MCI _ _
WB QC pass, no edits ‘ ——— - Y . The IXIQ.Ai segmentations (CNN) had
’ 4 -
p— ovalue 5008 " 5000 e high groungl truth overlaps (mgan
DSC>97). Visual QC found consistently
CLES 0.67 0.81 0.67 0.78 . . . .
—_ 2 T—— high segmentation quality (see Figure
ol : , group difference [%] 02 (%:16)  106(002) - 027(0.01) 043 (0.01) 4): 98% of the whole-brain and 100%
qéw . : CN vs AD of the thalamus segmentations passed
: E Freesurfer BSI ANTs+) IXIQ.Ai QC
RNTEY el b i P (@) N D
-y B ) X g p-value 0.005 le-7 6e-8 2e-10
M !"‘- {PL-% £ CLES 0.67 0.83 0.84 0.89 The IXIQ.Ai volume change method
: O i CNN + Jacobian), applied to the WB,
Thalamus QC passes, no edits p Me‘f'f'fa“ (D) 116(0.11)  1.12(0.03) 0.46(0.01)  0.73(0.01) ( e ), app ,
< group difference [%] detected significant group differences
S MCl vs AD in changes over 12 months, with
E 6 Freesurfer BSI ANTs+J IXIQ.Ai similar or higher CLES and similar or
~ S p-value 0.86 0.41 0.009 0.001 lower SD of group differences (%) than
. D n=d CLES 0.48 0.55 0.66 0.70 other methods (Figure 5).
Median (SD)
. 0.13 (0.18) 0.05 (0.03) 0.18 (0.01) 0.30(0.01)
diff %
group difference [%] The WB and thalamus volume
Freesurfer BSI ANTs+Jacobian Al

differences were normally distributed

Figure 4: Examples of WB and thalamus segmentations from IXIQ.Ai Figure 5: WB volume change (negative change = loss) estimated by IXIQ.Ai (CNN + Jacobian), compared to FreeSurfers, BSI?, and and the distributions zero-centred.
brain region workflow (CNN) that passed QC without manual edits. ANTS (https://github.com/ANTsX/ANTs/wiki) + Jacobian. p-value: Mann-Whitney U-test. CLES: Common Language Effect Size.
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